

Ivan Metocean Overview

- Focus on deep water for now
- Agenda
 - Ivan Wind/Wave Hindcast
 - Current Hindcast
 - Wave/Wind measurements
 - Historical perspective
 - NWS Wind Forecasting
- Each talk followed by 5-min questions

Ivan Characteristics

Ivan...

- Category 3-4 Hurricane
- Central pressure 939 mb
- Radius=20-30 nm
- Max Wave H_{max}~96 ft
- Wind=92 kt (33 ft, 30 min)

API/RP-2A 100-year...

- d/w H_{max}=71.2 ft
- Wind=87 kt (33 ft, 30 min)

Hindcast Methodology

- Modeling done by OWI
- Basic Steps
 - specify storm parameters (time history of pressure, etc.)
 - Run wind model to determine wind field every 30 minutes
 - Use modeled winds to drive wave & surge models
 - Validate against site measurements

Ivan Current Hindcast

- Review Hurricane Currents
- Hindcast Currents from Ivan
- Design Implications?

Hurricane Current

Hurricane Current:

- Generated by local wind stress
- Strongest on right side in DW (10's of km wide)
- Current peaks within 1-3 hours of max wind
- Strong inertial component persists 3-4 days

Hurricane Current

Hurricane-Loop Interaction

- Varying temperature and salinity profile has strong influence on hurricane current
- Joint hurricane-Loop load cases likely important for southern DW areas

Effect of Different Temperature and Salinity on Hurricane Current profile

Hindcasting Ability...

- Current hindcast ability not as developed as that for winds, waves
- Little data to compare against, no profile data above 30 m
- Bulk mixed-layer model does good job in 5 of 6 comparisons with ML averages

ML Model Compared to Measurements, Hurricane Frederic (Sept. 1979)

Hindcasting Ability

- Recent data shows substantial shear in mixed layer
- M-Y 1D profile model compares well in DW
- Bathymetry needed around shelf/slope
- Models are very sensitive to inputs

Profiles Near Time of Peak Current Near Genesis

Ivan Hindcasts

- Commercial hindcast available with HYCOM
- Preliminary comparison on slope with Navy data shows reasonable agreement
- Bulk ML, M-Y 1D profile analyses also performed
- No DW current data for validation

Snapshot of Ivan HYCOM Currents

Model Comparisons for Ivan in DW

- Mixed-layer depth and average speed from Bulk ML, M-Y 1D profile models similar
- HYCOM mixedlayer average speed is similar, but profile and ML depth are questionable

Profiles Near Time of Peak Current in DW

Model Comparisons Continued

- Bulk ML, M-Y 1D profile model predict similar currents across storm track
- M-Y 1D predicts higher mean speeds on 100 m
- HYCOM result includes Ulysses eddy currents, so not shown

Summary of Currents

- Ivan model efforts hampered by lack of data for validation
- Bulk ML, M-Y 1D profile models with limited prior validation yield similar results for Ivan in DW
- HYCOM results in DW are questionable – need to investigate
- M-Y 1-D profile model should be used to derive criteria for shallow draft platforms (Bulk ML model suitable for spars)

Industry Site Measurements at Marlin and Medusa

Marlin TLP

- Wind at top of crane
- Wave radars on SE (noisy) & SW sides
- High sampling rates

Medusa Spar

- Wave radars on SE (noisy) & NW sides
- High sampling rates

Wave / Platform Interaction

80' wave at Ekofisk

Model tests

What is the height of the undisturbed wave crest (green water) that might be inferred from local platform damage?

Measurement Summary

- Wind spectra fit standards
- No evidence of "freak" (rogue) waves
- Distributions of measured wave crests fit design standards
- Damage provides no compelling evidence for criteria change

Ivan Characteristics

Ivan...

- Pressure 939 mb (93%)
- Radius=25 nm (25%)
- Forward Spd=10 kt (50%)
- Wind=92 kt (33 ft, 30 min)
- Max Wave H_{max}~96 ft

API/RP-2A 100-year...

- d/w H_{max}=71.2 ft
- Wind=87 kt (33 ft, 30 min)

Key Questions

- What return interval was Ivan?
- Was Ivan statistically "unexpected"?
- Should criteria be increased & if so in what part of Gulf?

Satellite image of Ivan

Ivan's Return Interval? Site-to-Site Variability

- Model hindcast
 (GUMSHOE) gives large
 site-to-site variability
- Causes of variability
 - 1. Water depth & fetch
 - 2. Insufficient sample of severe storms
 - 3. Regional differences

100-yr & max H_s along the 600 ft isobath based on Gumshoe site hindcast

Insufficient Sample of Severe Storms

Parametric model cross-section of the ${\rm H}_{\rm s}$ in Hurricane Camille.

Extremal fit for site near maximum of Camille. W/o Camille, $H_{\rm s100}$ is 4 ft lower.

Given small size of storms & infrequent occurrence, we need several hundred years of data to sufficiently reduce this "noise"

Choosing the Optimal Pooling Size

- Apply "cross-validation" (Chouinard,1992, OTC)
- Optimal dist. ~ 100 miles
- 10-4 JIP has found similar results
- Results that follow use pooling at 5-7 sites
- Will also use this 100-mi scale in another key way

What Return Interval Was Ivan?

- ~2500 yr H_s at site where peak occurred
- Exceeded H_{s100} over ~150 mile swath

Ivan peak vs Gumshoe N-yr H_s along 28.25°N

Was Ivan Statistically Unexpected?

- Intuition: expect one, 100-yr storm in 100 yrs in entire Gulf
- Fact: expect Hs₁₀₀ exceeded somewhere in Gulf every 4 yrs
- Because.....
 - Must treat Gulf as statistically independent regions
 - Assume "regions" in Gulf are 100 mi apart
 - Expect a 2500-yr H_s in 100 yrs
 - That sounds like Ivan!

25 sites, ~ 100 mi apart

Ivan not a major surprise based on pre-Ivan distribution

Metocean Summary

- . Ivan generated peak H_{max}~ 96 ft
- 2. Highest in 100 yrs but not by much
- 3. Ivan generated ~2500-yr Hs using the pre-Ivan extremal distribution
- 4. Ivan peak wind & current ~ 700-yr event
- 5. Could argue Ivan is an "outlier"
- But new designs in Eastern Gulf should include Ivan
- Under peak of Ivan, a d/w facility could have seen wave loads ~30% higher then present design but still << then 100% factor of safety
- 8. Further work
 - a. Look at metocean in shallow sites
 - b. Review API metocean guidelines
 - Obtain more upper water-column currents

FORECAST IMPROVEMENT

- Better Observations
- **Improved Computer Models**

How Do We Track A Hurricane?

Satellite Imagery

GOES East and Goes West Visual, IR, WV Every 15-30 minutes (rapid update for research) Used to determine location, motion, and intensity

Aircraft Reconnaissance

USAF C-130 - Primary Mission Operations NOAA P-3 - Primary Mission Research NOAA G-IV – High Altitude Operations More accurate than satellite

Doppler Radar

250 nm range for reflectivity tracking125 nm range for Doppler velocity estimatesLocation, wind, motion, rainfall estimates and tornado detection

IVAN CHARACTERISTICS

- Typical Cape Verde Storm
- Southern Most Major Hurricane
- Reached Category 5 Three Different Times
- Was a Category 5 for over 30 consecutive hours.
- Weakened and made landfall as Cat 3

IVAN TRACK FORECAST ERRORS			
# HOURS	NHC	FSSE	10 YR AV
12	24	21	44
24	47	38	78
36	79	58	112
48	108	81	146
72	161	126	217
96	222	171	248
120	289	199	319

WIND PROBABILITY PRODUCT

- Experimental Product in 2005
- Available on NHC Homepage
- Graphical and Text
- Could become Operational in 2006

- Gene Hafele
- Warning and Coordination Meteorologist
- gene.hafele@noaa.gov
- **281-337-5074 x 223**